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Photochemical Air Pollution

 Photochemical air pollution is caused by
the interaction of sunlight with oxides of
nitrogen (NO, = NO + NO,) and volatile
organic compounds (VOCs) emitted into
the atmosphere.



Emissions of VOCs and NO,

e ~1,500 Million tons per year of organic
compounds (not including methane) are
emitted into the atmosphere from natural
(or biogenic) sources and from human
activities.

 On a global basis, 80-90% of these non-
methane organic emissions are from
vegetation.

* NO, Is emitted mainly from combustion
sources — vehicles and fossil-fueled power
plants being prime examples.



Biogenic VOCs from vegetation
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Consequences of VOC emissions

In the presence of oxides of nitrogen (NO,)
and sunlight, a series of reactions occur
leading to photochemical air pollution,
which includes:

e Formation of ozone and other toxic
chemicals.

 Formation of secondary aerosol (in
addition to directly emitted aerosol).



Morning, vehicle
emissions

Afternoon,
pollution
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The hydroxyl (OH) radical is a key reactive intermediate



The atmosphere Is a large chemical reactor




Current research at APRC

Kinetics, products and mechanisms of gas-
phase reactions of individual VOCs with OH
radicals, NO; radicals and O,.

Chemical pathways leading to formation of
secondary organic aerosol from reactions of
iIndividual VOC:s.

Ambient measurements of selected organics,
Including PAHs and nitro-PAHSs, and comparison
with laboratory studies.

Real-time ambient measurements of selected
chemical species by spectroscopic methods.



Gas-phase studies
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One of three ~7000 liter
volume Teflon chambers.

20% of blacklamps are on.




5870 liter volume evacuable chamber




5870 liter volume evacuable chamber




Direct air sampling atmospheric pressure ionization
tandem mass spectrometer (API-MS/MS)




Gas and aerosol studies: alkanes

Liquified petroleum gas (LPG).
50-60% of gasoline.
50-60% of organics in vehicle exhaust.

~50% of non-methane VOCS In air In urban
areas.
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Alkanes react with OH radicals in the atmosphere

OH + CH3CH,CH3 — CH3CHCH+

jo

(CH3)2CHOOH 4— (CH3)2CHOO

(CH3)2CO
(CH3),CHONO ,
(CH3)2CHOH

(CH3)2CHO + NO>

decomposition / \i)z

CH3CHO + HCHO (CH3)2CO



Product yields (as of 1982-1994)

alkane | % carbonyls | % nitrates | % missing
n-butane 84 8 8
n-pentane ~30 12 ~58
n-hexane low 21 high

From data in Carter et al., 1976: Atkinson et al., 1982.




Missing products postulated to be 1,4-hydroxycarbonyls,
formed after alkoxy radical isomerization (Carter et al., 1976)

CH3CH(O)CH2CH2CH3 —> CH3C(O)CH,CHoCH3 + HO»
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CH3CHO + CH3CH,CH,
CHs—HC~  'H |
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CH,
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CH3CH(OH)CH ,CH,CH;

'

second isomerization ) ) i
. ) The isomerization can

CH3C(O)CH,CH,CH,OH only occur for larger
1,4-hydroxycarbonyl alkanes



Further progress was halted until new
analytical techniques became available
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API-MS analyses in positive ion mode
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API-MS analyses in negative ion mode
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Solid-Phase MicroExtraction fibers

Can be coated with a chemical for on-fiber
derivatization of carbonyl-containing
compounds, followed by GC analyses.

+ Hzo



Fibers are retractable. After coating with PFBHA, the
fibers are exposed to the chamber contents with the
chamber mixing fan on for typically 5 min.

Fiber, ~20 mm long




Product yields (%) in air at 50% RH

alkane | carbonyls | nitrates Ch;%rg):%'s hn%?r;ci)e(g-
n-pentane 50 10.5 54 (36) 2.6
n-hexane 10 14 57 (53) 4.6
n-heptane <1l 18 51 (46) 4.7
n-octane <1 23 53 (27) 5.4

Yields in parentheses from API-MS in dry air (3-5% RH)




Success so far!
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what happens to 1 4- hydroxycarbonyls |n the
atmosphere?




ABSORBANCE
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5-Hydroxy-2-pentanone (5H2PO) is the only
commercially available 1,4-hydroxycarbonyl
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| 4,5-Dihydro-2-methylfuran
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FT-IR spectra of a
5H2PO - N,

W‘ I“ mixture in the dark



5-Hydroxy-2-pentanone has lifetime of 1.1 hr in dry air.

4,5Dihydro-2-methylfuran is stable in dry air, but converts to
5H2PO at 5% relative humidity, with a lifetime of 3.5 hr.
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4,5-dihydro-2-methylfuran



Reactions of 5-hydroxy-2-pentanone
and 4,5-dihydro-2-methylfuran

o 4, 5DH2MF reacts very rapidly with OH radicals,
NO, radicals, and O;. Daytime lifetimes:

n-Pentane: 1.5day (OH)
5-Hydroxy-2-pentanone: 9 hr (OH)
4,5-Dihydro-2-methylfuran: 38 min  (OH)

/min  (Oy)



Relative humidities where dihydrofuran formation is important
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Aerosol-phase studies
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Experimental
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Reactions of 1,4-Hydroxycarbonyls
O
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Spectroscopic studies



Cavity Ring-Down Spectroscopy (CRDS)
L

Iinq Gas sample iu: Detector

&, High-reflectivity Mirrors _s7
R >99.99 %

Quantitative and
absolute measurements
High sensitivity with a long effect ,fm
absorption path (~ km) -
In a compact setup (~ m)
Spectroscopic selectivity
Real-time and in-situ detection




Typical CRDS Signal

0.10
Wavelength: 408.0 nm
> Cavity Length: _109.1 cm
Iz Sample: clean air, 760 Torr
s
=
C:E 0.05 Single-Exponential Dacay t = 20.10 ps I
(@)
=2
~ 6 km absorption
Residual
000 — ~—
I ! I ! I ! I
0 20 40 60

Time (ps)

Usable data in ~ 3.5 1, effective absorption length ~ 21 km (Speed of light = 300 m/ps)



ty Ringdown Spectrometer
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CRDS Absorption Spectrum of HONO
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HONO Concentration ~ 1 ppm



CRDS Detection of HONO
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Linear response
Large dynamic range
High detection sensitivity

Number density of HONO is based on measurements using a NO-NO, Analyzer
1 ppm = 2.38 x 10™ molecules/cm® at 735 Torr and 25°C



Detection Sensitivity for HONO

Ring-down Decay Rate 1/t (x10°s™)
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CRDS Spectrum of NO,
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CRDS Detection Sensitivity for NO,
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Variations in NO, concentration during daytime
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Thank you for your attention
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